1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
| import torch.nn.functional as F from torch import nn class SelfAttention(nn.Module): def __init__(self, input_size, hidden_size): super(SelfAttention, self).__init__() self.W = nn.Linear(input_size, hidden_size, True) self.u = nn.Linear(hidden_size, 1) def forward(self, x): u = torch.tanh(self.W(x)) a = F.softmax(self.u(u), dim=1) x = a.mul(x).sum(1) return x class HAN(nn.Module): def __init__(self): super(HAN1, self).__init__() num_embeddings = 5844 + 1 num_classes = 10 num_sentences = 30 num_words = 60 embedding_dim = 200 hidden_size_gru = 50 hidden_size_att = 100 self.num_words = num_words self.embed = nn.Embedding(num_embeddings, embedding_dim, 0) self.gru1 = nn.GRU(embedding_dim, hidden_size_gru, bidirectional=True, batch_first=True) self.att1 = SelfAttention(hidden_size_gru * 2, hidden_size_att) self.gru2 = nn.GRU(hidden_size_att, hidden_size_gru, bidirectional=True, batch_first=True) self.att2 = SelfAttention(hidden_size_gru * 2, hidden_size_att) self.fc = nn.Linear(hidden_size_att, num_classes, True) def forward(self, x): x = x.view(x.size(0) * self.num_words, -1).contiguous() x = self.embed(x) x, _ = self.gru1(x) x = self.att1(x) x = x.view(x.size(0) // self.num_words, self.num_words, -1).contiguous() x, _ = self.gru2(x) x = self.att2(x) x = self.fc(x) x = F.log_softmax(x, dim=1) return x
|